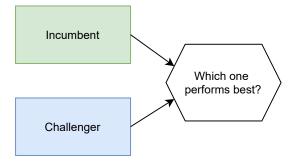
Statistical Comparison of Algorithm Performance Through Instance Selection

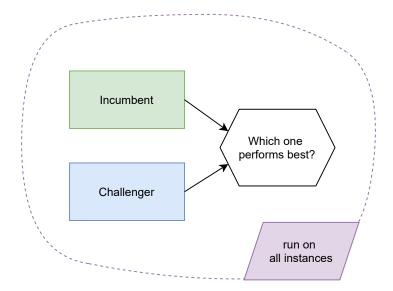
T. Matricon, M. Anastacio, N. Fijalkow, L. Simon and H. H. Hoos

October, 2021

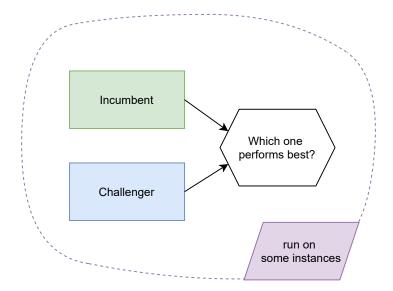
The Problem



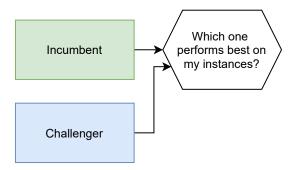
The Problem



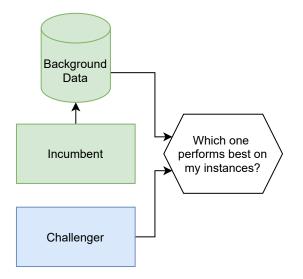
The Problem



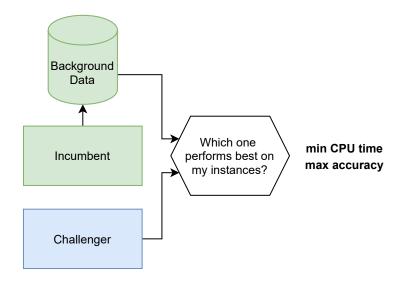
Per Set Efficient Algorithm Selection (PSEAS) Problem



Per Set Efficient Algorithm Selection (PSEAS) Problem



Per Set Efficient Algorithm Selection (PSEAS) Problem



1: compute instances score

- 1: compute instances score
- 2: while confidence < threshold do

- 1: compute instances score
- 2: while confidence < threshold do
- 3: pick best instance according to score

- 1: compute instances score
- 2: while confidence < threshold do
- 3: pick best instance according to score
- 4: run challenger on that instance

- 1: compute instances score
- 2: while confidence < threshold do
- 3: pick best instance according to score
- 4: run challenger on that instance
- 5: update confidence
- 6: update instances score
- 7: end while

- 1: compute instances score
- 2: while confidence < threshold do
- 3: pick best instance according to score
- 4: run challenger on that instance
- 5: update confidence
- 6: update instances score
- 7: end while
- 8: return best performing algorithm

- 1: compute instances score
- 2: while confidence < threshold do
- 3: pick best instance according to score
- 4: run challenger on that instance
- 5: update confidence
- 6: update instances score
- 7: end while
- 8: return best performing algorithm

- 1: compute instances score
- 2: while confidence < threshold do
- 3: pick best instance according to score
- 4: run challenger on that instance
- 5: update confidence
- 6: update instances score
- 7: end while
- 8: return best performing algorithm

Instance scores:

• baseline: random

Instance scores:

- baseline: random
- variance-based: $\frac{Var[T_l]}{\mathbb{E}[T_l]}$
- discrimination-based [Gent et al., 2014]

Instance scores:

- baseline: random
- variance-based: $\frac{Var[T_l]}{\mathbb{E}[T_l]}$
- discrimination-based [Gent et al., 2014]
- information-based: $\frac{\mathbb{E}[InfoGained[I]]}{\mathbb{E}[T_I]}$
- feature-based

Instance scores:

- baseline: random
- variance-based: $\frac{Var[T_l]}{\mathbb{E}[T_l]}$
- discrimination-based [Gent et al., 2014]
- information-based: $\frac{\mathbb{E}[InfoGained[I]]}{\mathbb{E}[T_I]}$
- feature-based

Confidence:

• baseline: fixed size subset

Instance scores:

- baseline: random
- variance-based: $\frac{Var[T_l]}{\mathbb{E}[T_l]}$
- discrimination-based [Gent et al., 2014]
- information-based: $\frac{\mathbb{E}[InfoGained[I]]}{\mathbb{E}[T_I]}$
- feature-based

Confidence:

- baseline: fixed size subset
- Wilcoxon [Birattari, 2009]

Instance scores:

- baseline: random
- variance-based: $\frac{Var[T_l]}{\mathbb{E}[T_l]}$
- discrimination-based [Gent et al., 2014]
- information-based: $\frac{\mathbb{E}[InfoGained[I]]}{\mathbb{E}[T_I]}$
- feature-based

Confidence:

- baseline: fixed size subset
- Wilcoxon [Birattari, 2009]
- distribution-based: $\mathbb{P}(\sum \Delta T_I + \sum \Delta t_I \leq 0)$

rand. var.

• SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018) [Bischl et al., 2016]

- SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018) [Bischl et al., 2016]
- All possible ordered pairs of algorithms

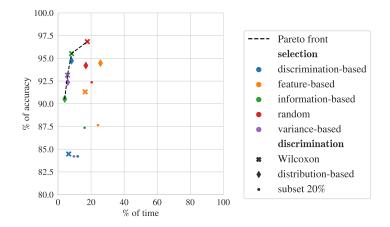
- SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018) [Bischl et al., 2016]
- All possible ordered pairs of algorithms
- Report
 - % of CPU time
 - % of accuracy

• Can our strategies reduce the CPU time required for evaluating a new algorithm?

- Can our strategies reduce the CPU time required for evaluating a new algorithm?
- Can our strategies discriminate well between top ranking algorithms?

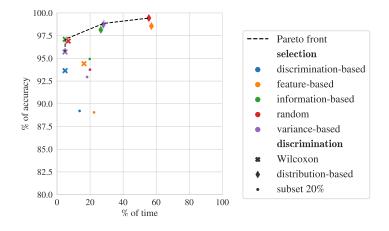
- Can our strategies reduce the CPU time required for evaluating a new algorithm?
- Can our strategies discriminate well between top ranking algorithms?
- How do the selection methods affect the accuracy of the strategies?

Accuracy over Median Running Time



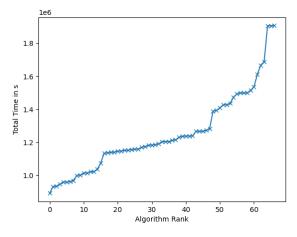
CSP MiniZinc [Stuckey et al., 2014] Confidence > 95%

Accuracy over Median Running Time



SAT 20 [Balyo et al., 2020] Confidence > 95%

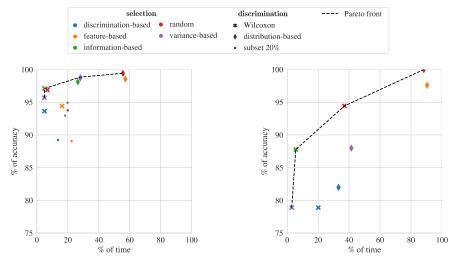
SAT 2020 Running Times



SAT 20 Algorithm Ranking

Statistical Comparison of Algorithm Performance

Top Ranking Algorithms

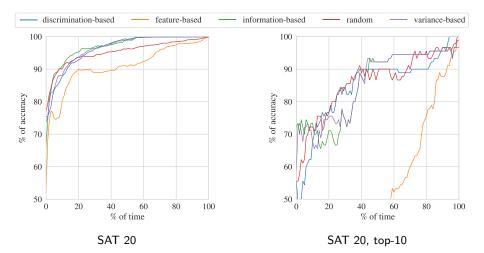


SAT 20

Confidence > 95% SAT 20, top-10

Statistical Comparison of Algorithm Performance

Selection Methods Accuracy for Wilcoxon



Statistical Comparison of Algorithm Performance

• Comparing algorithm on subset = faster result Statistical test = confidence in result

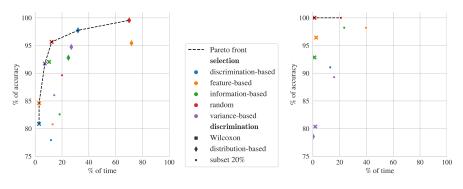
- Comparing algorithm on subset = faster result Statistical test = confidence in result
- How to select instances?
 - Low running time
 - High discrimination power

- Comparing algorithm on subset = faster result Statistical test = confidence in result
- How to select instances?
 - Low running time
 - High discrimination power
- Future applications
 - Faster development
 - Lower cost of experiments / competitions
 - Faster algorithm configuration

- Comparing algorithm on subset = faster result Statistical test = confidence in result
- How to select instances?
 - Low running time
 - High discrimination power
- Future applications
 - Faster development
 - Lower cost of experiments / competitions
 - Faster algorithm configuration

github.com/Theomat/PSEAS

Accuracy over median running time



BNSL

- T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, editors. Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions. Department of Computer Science Report Series B. Department of Computer Science, University of Helsinki, Finland, 2020. URL http://hdl.handle.net/10138/318450.
- M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer Publishing Company, Incorporated, 1st ed. 2005. 2nd printing edition, 2009. ISBN 3642004822. doi: 10.1007/978-3-642-00483-4.
- B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren. Aslib: A benchmark library for algorithm selection. Artificial Intelligence, 237:41–58, 2016. ISSN 0004-3702. doi: 10.1016/j.artint.2016.04.003.
- I. P. Gent, B. S. Hussain, C. Jefferson, L. Kotthoff, I. Miguel, G. F. Nightingale, and P. Nightingale. Discriminating instance generation for automated constraint model selection. In B. O'Sullivan, editor, Principles and Practice of Constraint Programming, pages 356–365, Cham, 2014. Springer International Publishing. doi: 10.1007/978-3-319-10428-7 27.
- P. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer. The minizinc T. Matricon et al.

challenge 2008-2013. *Al Magazine*, 35(2):55–60, 2014. ISSN 0738-4602. doi: 10.1609/aimag.v35i2.2539.