
Statistical Comparison of Algorithm Performance
Through Instance Selection

T. Matricon, M. Anastacio, N. Fijalkow, L. Simon and H. H. Hoos

October, 2021

T. Matricon et al. Statistical Comparison of Algorithm Performance 1



The Problem

Challenger

Incumbent

Which one 
performs best?

T. Matricon et al. Statistical Comparison of Algorithm Performance 2



The Problem

Challenger

Incumbent

Which one 
performs best?

run on 
all instances

T. Matricon et al. Statistical Comparison of Algorithm Performance 3



The Problem

Challenger

Incumbent

Which one 
performs best?

run on 
some instances

T. Matricon et al. Statistical Comparison of Algorithm Performance 4



Per Set Efficient Algorithm Selection (PSEAS) Problem

Challenger

Incumbent
Which one 

performs best on
my instances?

T. Matricon et al. Statistical Comparison of Algorithm Performance 5



Per Set Efficient Algorithm Selection (PSEAS) Problem

Challenger

Incumbent
Which one 

performs best on
my instances?

Background
Data

T. Matricon et al. Statistical Comparison of Algorithm Performance 6



Per Set Efficient Algorithm Selection (PSEAS) Problem

Challenger

Incumbent
Which one 

performs best on
my instances?

Background
Data

min CPU time
max accuracy

T. Matricon et al. Statistical Comparison of Algorithm Performance 7



Iterative Strategy

1: compute instances score

2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 8



Iterative Strategy

1: compute instances score
2: while confidence < threshold do

3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 8



Iterative Strategy

1: compute instances score
2: while confidence < threshold do
3: pick best instance according to score

4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 8



Iterative Strategy

1: compute instances score
2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance

5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 8



Iterative Strategy

1: compute instances score
2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while

8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 8



Iterative Strategy

1: compute instances score
2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 8



Iterative Strategy

1: compute instances score
2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 9



Iterative Strategy

1: compute instances score
2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm

T. Matricon et al. Statistical Comparison of Algorithm Performance 10



Score & Confidence Methods

Instance scores:
baseline: random

variance-based: Var [TI ]
E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset

Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Evaluation protocol

SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018)
[Bischl et al., 2016]

All possible ordered pairs of algorithms

Report
% of CPU time
% of accuracy

T. Matricon et al. Statistical Comparison of Algorithm Performance 12



Evaluation protocol

SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018)
[Bischl et al., 2016]

All possible ordered pairs of algorithms

Report
% of CPU time
% of accuracy

T. Matricon et al. Statistical Comparison of Algorithm Performance 12



Evaluation protocol

SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018)
[Bischl et al., 2016]

All possible ordered pairs of algorithms

Report
% of CPU time
% of accuracy

T. Matricon et al. Statistical Comparison of Algorithm Performance 12



Research Questions

Can our strategies reduce the CPU time required for evaluating a new
algorithm?

Can our strategies discriminate well between top ranking algorithms?
How do the selection methods affect the accuracy of the strategies?

T. Matricon et al. Statistical Comparison of Algorithm Performance 13



Research Questions

Can our strategies reduce the CPU time required for evaluating a new
algorithm?
Can our strategies discriminate well between top ranking algorithms?

How do the selection methods affect the accuracy of the strategies?

T. Matricon et al. Statistical Comparison of Algorithm Performance 13



Research Questions

Can our strategies reduce the CPU time required for evaluating a new
algorithm?
Can our strategies discriminate well between top ranking algorithms?
How do the selection methods affect the accuracy of the strategies?

T. Matricon et al. Statistical Comparison of Algorithm Performance 13



Accuracy over Median Running Time

0 20 40 60 80 100
% of time

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
%

 o
f a

cc
ur

ac
y

Pareto front
selection

discrimination-based
feature-based
information-based
random
variance-based
discrimination

Wilcoxon
distribution-based
subset 20%

CSP MiniZinc [Stuckey et al., 2014] Confidence > 95%

T. Matricon et al. Statistical Comparison of Algorithm Performance 14



Accuracy over Median Running Time

0 20 40 60 80 100
% of time

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
%

 o
f a

cc
ur

ac
y

Pareto front
selection

discrimination-based
feature-based
information-based
random
variance-based
discrimination

Wilcoxon
distribution-based
subset 20%

SAT 20 [Balyo et al., 2020] Confidence > 95%

T. Matricon et al. Statistical Comparison of Algorithm Performance 15



SAT 2020 Running Times

SAT 20 Algorithm Ranking

T. Matricon et al. Statistical Comparison of Algorithm Performance 16



Top Ranking Algorithms

Pareto frontselection

discrimination-based
feature-based
information-based

random
variance-based

discrimination

Wilcoxon
distribution-based
subset 20%

0 20 40 60 80 100
% of time

75

80

85

90

95

100

%
 o

f a
cc

ur
ac

y

0 20 40 60 80 100
% of time

75

80

85

90

95

100

%
 o

f a
cc

ur
ac

y

SAT 20 Confidence > 95% SAT 20, top-10

T. Matricon et al. Statistical Comparison of Algorithm Performance 17



Selection Methods Accuracy for Wilcoxon

discrimination-based feature-based information-based random variance-based

0 20 40 60 80 100
% of time

50

60

70

80

90

100

%
 o

f a
cc

ur
ac

y

SAT 20

0 20 40 60 80 100
% of time

50

60

70

80

90

100

%
 o

f a
cc

ur
ac

y

SAT 20, top-10

T. Matricon et al. Statistical Comparison of Algorithm Performance 18



Conclusion

Comparing algorithm on subset = faster result
Statistical test = confidence in result

How to select instances?
Low running time
High discrimination power

Future applications
Faster development
Lower cost of experiments / competitions
Faster algorithm configuration

github.com/Theomat/PSEAS

T. Matricon et al. Statistical Comparison of Algorithm Performance 19

github.com/Theomat/PSEAS


Conclusion

Comparing algorithm on subset = faster result
Statistical test = confidence in result

How to select instances?
Low running time
High discrimination power

Future applications
Faster development
Lower cost of experiments / competitions
Faster algorithm configuration

github.com/Theomat/PSEAS

T. Matricon et al. Statistical Comparison of Algorithm Performance 19

github.com/Theomat/PSEAS


Conclusion

Comparing algorithm on subset = faster result
Statistical test = confidence in result

How to select instances?
Low running time
High discrimination power

Future applications
Faster development
Lower cost of experiments / competitions
Faster algorithm configuration

github.com/Theomat/PSEAS

T. Matricon et al. Statistical Comparison of Algorithm Performance 19

github.com/Theomat/PSEAS


Conclusion

Comparing algorithm on subset = faster result
Statistical test = confidence in result

How to select instances?
Low running time
High discrimination power

Future applications
Faster development
Lower cost of experiments / competitions
Faster algorithm configuration

github.com/Theomat/PSEAS

T. Matricon et al. Statistical Comparison of Algorithm Performance 19

github.com/Theomat/PSEAS


T. Matricon et al. Statistical Comparison of Algorithm Performance 20



Accuracy over median running time

0 20 40 60 80 100
% of time

75

80

85

90

95

100

%
 o

f a
cc

ur
ac

y

SAT 18

Pareto front
selection

discrimination-based
feature-based
information-based
random
variance-based
discrimination

Wilcoxon
distribution-based
subset 20% 0 20 40 60 80 100

% of time

75

80

85

90

95

100

%
 o

f a
cc

ur
ac

y
BNSL

T. Matricon et al. Statistical Comparison of Algorithm Performance 21



T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
editors. Proceedings of SAT Competition 2020: Solver and Benchmark
Descriptions. Department of Computer Science Report Series B.
Department of Computer Science, University of Helsinki, Finland, 2020.
URL http://hdl.handle.net/10138/318450.

M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective.
Springer Publishing Company, Incorporated, 1st ed. 2005. 2nd printing
edition, 2009. ISBN 3642004822. doi: 10.1007/978-3-642-00483-4.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette,
H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren.
Aslib: A benchmark library for algorithm selection. Artificial Intelligence,
237:41–58, 2016. ISSN 0004-3702. doi: 10.1016/j.artint.2016.04.003.

I. P. Gent, B. S. Hussain, C. Jefferson, L. Kotthoff, I. Miguel, G. F.
Nightingale, and P. Nightingale. Discriminating instance generation for
automated constraint model selection. In B. O’Sullivan, editor, Principles
and Practice of Constraint Programming, pages 356–365, Cham, 2014.
Springer International Publishing. doi: 10.1007/978-3-319-10428-7_27.

P. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer. The minizinc
T. Matricon et al. Statistical Comparison of Algorithm Performance 21

http://hdl.handle.net/10138/318450


challenge 2008-2013. AI Magazine, 35(2):55–60, 2014. ISSN 0738-4602.
doi: 10.1609/aimag.v35i2.2539.

T. Matricon et al. Statistical Comparison of Algorithm Performance 21


	The Problem
	Context
	Definition

	PSEAS
	Iterative process
	Results

	Conclusion
	References

