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Iterative Strategy

1: compute instances score

2: while confidence < threshold do
3: pick best instance according to score
4: run challenger on that instance
5: update confidence
6: update instances score
7: end while
8: return best performing algorithm
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Score & Confidence Methods

Instance scores:
baseline: random

variance-based: Var [TI ]
E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset

Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Score & Confidence Methods

Instance scores:
baseline: random
variance-based: Var [TI ]

E[TI ]

discrimination-based [Gent et al., 2014]

information-based: E[InfoGained [I ]]
E[TI ]

feature-based

Confidence:
baseline: fixed size subset
Wilcoxon [Birattari, 2009]

distribution-based: P(
∑
I

∆TI︸ ︷︷ ︸
rand. var.

+
∑
I

∆tI︸ ︷︷ ︸
constant

≤ 0)

T. Matricon et al. Statistical Comparison of Algorithm Performance 11



Evaluation protocol

SAT 2020 + 3 ASlib datasets (CSP MiniZinc, BNSL, SAT 2018)
[Bischl et al., 2016]

All possible ordered pairs of algorithms

Report
% of CPU time
% of accuracy
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Research Questions

Can our strategies reduce the CPU time required for evaluating a new
algorithm?

Can our strategies discriminate well between top ranking algorithms?
How do the selection methods affect the accuracy of the strategies?
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Accuracy over Median Running Time
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SAT 2020 Running Times

SAT 20 Algorithm Ranking
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Top Ranking Algorithms
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Selection Methods Accuracy for Wilcoxon
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Conclusion

Comparing algorithm on subset = faster result
Statistical test = confidence in result

How to select instances?
Low running time
High discrimination power

Future applications
Faster development
Lower cost of experiments / competitions
Faster algorithm configuration

github.com/Theomat/PSEAS
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Accuracy over median running time
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